
Recovering Communities in Networks

Sam Rosen ∗

December 2019

Abstract

Modularity is a measure of the quality of community assignments in networks.
We attempt a simulated annealing strategy focused on fast calculations of mod-
ularity. The results achieved for trivial cases are promising, but the algorithm
fails to scale well. After noticing where pitfalls occur, we can easily produce
cases where the algorithm fails greatly. We conclude the project was a strong
learning experience.

1 Introduction

A graph or network is a collection of nodes that connect to other nodes via edges.
They are commonly used in algorithm classes and applications are numerous.
Graphs are used to model phenomena such as social networks, infrastructure,
and biological processes. Graphs can be represented as adjacency matrices. An
adjacency matrix has entry Ai,j = wi,j where the edge weight wi,j > 0 if and
only if there is an edge between nodes i and j. In our problem we will consider
simple undirected graphs so Ai,j = Aj,i and wi,j ∈ {0, 1}.

A node is a neighbor to another node if there is an edge between them. A
community or cluster in a graph is a collection of nodes where each node has a
similar set of neighbors to other nodes in the community. A community could be
a group of friends in a social network, a highly tangled road system, or a complex
coupled system. The problem is ill-defined, but typically when finding clusters,
the quality is determined by how many edges from nodes in the community go
to nodes outside the community (inter-community edges) versus the amount of
edges from nodes in the community to other nodes in the community (intra-
community edges). An ideal community assignment has many edges between
its members, and minimal going to other communities.

Modularity is a popular metric for measuring the quality of community
assignments. It is well-studied and is often used to recover communities by
maximizing it [2]. Although globally maximizing modularity is an NP-HARD
problem, good community assignments can be found with sub-optimal values.

∗SamRosen@umass.edu

1

Modularity scales well due to its local properties [2]. The Louvain algorithm was
able to create strong community assignments graph with well-above 1 million
nodes [1]. Although modularity generalizes to weighed and directed graphs, we
will use the below definition for a simple undirected graph G = (V,E):

Q(µ) =
1

2m

∑
i,j

(
Ai,j −

kikj
2m

)
δ(µi, µj)

m : number of edges in G, |E|
Ai,j : entry (i, j) for adjacency matrix of G

ki : degree of node i

δ(x, y) : Dirac delta function; δ(x, y) = 1 ⇐⇒ x = y, 0 otherwise

µi : The community assignment for node i (a node can belong to only one community)

Because δ(µi, µj) = 0 if nodes i and j are in separate communities, we only
need to evaluate modularity over each community. For maximization, ideally
the largest possible communities are assigned so the Dirac delta function is
positive many times. However, if we are erroneous with our assignment, we will
penalize modularity by placing two nodes that are not connected (Ai,j = 0) in

the same cluster by evaluating Ai,j − kikj
2m as a negative number. Modularity

derives its robustness from the ratio
kikj
2m which balances the clout of nodes

with high degree. The ratio causes two nodes of high degree to greatly penalize
modularity if they are placed in the same community but do not have an edge
between each other. Moreover, it also dampens the effect if there is an edge
between them, since their high degree could skew the communities to simply be
the neighbors of nodes with high degree.

The stochastic block model (SBM) is a random graph model with param-
eters, S ∈ Nk, and P ∈ [0, 1]k×k. The model produces k blocks with |C1| =
S1, |C2| = S2, ..., |Ck| = Sk. The probability of an edge between two nodes
x ∈ Ci and y ∈ Cj is Pi,j . We will use networkx [4] to generate SBM’s and han-
dle all other graph functionality. By maximizing modularity, we hope to recover
the parameters and communities for a generated stochastic block model.

2 Problem Formulation

Consider a graph G = (V,E) with adjacency matrix A ∈ {0, 1}N×N where
|V | = N . Node i and node j have an edge between each other if and only if
Ai,j = 1. We will consider simple undirected graphs, so Ai,j = Aj,i.

Let [x] = {1, 2, ..., x}, x ∈ N. A clustering vector µ ∈ [N]N with entry
µi = j signifies node i is in a cluster with node j as the centroid. Although the
centroid has no meaning in this definition of community, this definition allows us
to avoid specifying the number of communities and fitting a clustering matrix.
Two nodes i, j are in the same cluster if and only if they have the same centroid
(µi = µj).

2

Our optimization problem is as follows:

maximize
µ∈[N]N

1

2m

∑
i,j

(
Ai,j −

kikj
2m

)
δ(µi, µj)

The state space of the problem is size NN . It is unlikely we will find a
global maximum, but there is no guarantee a perfect recovery of the blocks will
correspond to a maximum. After maximizing Q we can generate parameters
from the communities encoded in µ. S will be the size of the communities, and
Pi,j will be the density of edges between nodes in community i and community
j.

3 Simulated Annealing

Simulated annealing is a method for optimization problems with large state
spaces. [5] is a strong introduction to simulated annealing that assisted in
implementing our solution. The write-up summarizes simulated annealing in 5
steps:

1. Set an initial temperature T = T0 and choose a valid initial candidate in
the state space to be the current best solution.

2. Pick a random ”neighboring” candidate in the state space.

3. Accept the neighboring candidate if it is an improvement over the current
best solution.

4. If the neighboring candidate is worse choose it to be the optimal candidate
based off some probability. [6] uses the probability exp(∆

T) where ∆ is the
difference between the optimal solution and the worse candidate and T is
the current temperature.

5. Lower the temperature and go back to step 3, repeating many times.
[6] recommends decreasing the temperature in an exponential decaying
manner and finishing once convergence is achieved.

Most of these steps are vague since they must be defined in the context of
the problem. For example, the range of the function to optimize could be 1,
so a large initial temperature (exp(∆

T) ≈ 1) will cause a large portion of the
iterations to simply almost always go to the random neighboring candidate,
wasting processing time from no clever navigation of the state space. Choosing
a neighboring candidate is where most simulated annealing problems vary. A
good heuristic for defining neighboring candidates is to map the state space
to a graph, where nodes are states with edges to neighboring states; a strong

3

definition should create a state space graph with a small diameter, so any state
is not too many steps away from an optimal solution [7].

Using simulated annealing to maximize modularity has had previous suc-
cess. [2] cites multiple successful cases, but notes [3] performed best by doing a
divide-and-conquer strategy for choosing neighboring candidates. Other strate-
gies noted for avoiding local minima include merging or splitting communities,
and reassigning multiple nodes at a time.

4 Solution

For our solution we deviate from the standard steps for simulated annealing:

1. Instead of returning the current optimal candidate after completing the
iterations, we maintain a single global optimal candidate, the candidate
that had the highest modularity during the iterations. We do this since
the objective function varies wildly over the iterations.

2. After returning our solution, we ”smooth” it to potentially remove com-
munities of a single node.

Algorithm 1 Simulated Annealing for Maximizing Modularity

1: G = (V,E); r ∈ (0, 1);T0 > 1:
2: procedure SA(G, r, T0)
3: µ← [N] . Initial valid candidate
4: µ∗ ← µ . Global candidate tracking
5: T ← T0

6: while T > 1 do
7: µ′ = µ
8: Choose a random node i
9: if U [0, 1] < .5 then . Generate random number in [0, 1]

10: µ′i = i . Set a node’s centroid equal to itself
11: else
12: for each neighbor j of i do
13: µ′j = µi . Set all of a node’s neighbors to be in its cluster

14: Calculate ∆Q = Q(µ′)−Q(µ)
15: if Q(µ′) > Q(µ∗) then
16: µ∗ ← µ′

17: µ← µ′

18: else
19: if U [0, 1] < min

(
exp

(
∆Q
T

)
, 1
)
then

20: µ← µ′

21: T ← T · (1− r)
22: return µ∗

4

Because we occasionally set a random node to be its own centroid, returned
solutions often have several communities of a single node. However, some of
these single node communities have a majority of neighbors in another commu-
nity. After the simulated annealing process, the solution is smoothed: we set
these singleton communities to be in the majority community (if it exists) of
the node’s neighbors.

Algorithm 2 Smoothing Community Assignments

G = (V,E); µ ∈ [N]N ; ρ ∈ [.5, 1]:
2: procedure Smooth(G,µ, ρ)

for each community with a single node i do
4: if ρ% or higher of neighbors of i are in community j then

µi = j

6: if modularity has increased then
return smoothed µ

8: else
return original µ

Speeding up the process

One can speed up the modularity calculations by storing the RHS as a matrix:

Ai,j −
kikj
2m

=

(
A− 1

2m
deg(G) · deg(G)T

)
i,j

Additionally the modularity function (O(N2) calculations) only needs to
evaluated once in the initialization. Change in modularity can be found in O(N)
calculations by first calculating the change of removing a node from a community
and then adding the change from setting that node to a new community. Let
µi→j be the resulting clustering vector from changing node i to have centroid j
(setting µi = j). We then have the change in modularity by removing a node i
from a community is:

∆Q−(i;µ) = − 1

2m

∑
l

(
Ai,l −

kikl
2m

)
δ(µi, µl)−

1

2m

∑
l

(
Al,i −

klki
2m

)
δ(µl, µi)

The change in modularity from adding node i to community j:

∆Q+(i→ j;µ) =
1

2m

∑
l

(
Ai,l −

kikl
2m

)
δ(j, µl) +

1

2m

∑
l

(
Al,i −

klki
2m

)
δ(µl, j)

Since we are handling undirected graphs these can be simplified to:

∆Q−(i;µ) = − 1

m

∑
l

(
Ai,l −

kikl
2m

)
δ(µi, µl)

5

∆Q+(i→ j;µ) =
1

m

∑
l

(
Ai,l −

kikl
2m

)
δ(j, µl)

Then the overall change in modularity is:

Q(µi→j) = Q(µ) + ∆Q−(i;µ) + ∆Q+(i→ j;µ)

Q(µi→j) = Q(µ) +
1

m

∑
l

(
Ai,l −

kikl
2m

)(
δ(j, µl)− δ(µi, µl)

)
These calculations can be easily vectorized. After making these improve-

ments we were able to achieve reasonable speed for larger graphs (≈ 5000 nodes).

5 Results

We achieve good results on trivial examples and SBM’s with a small number of
clusters. However, once we generate SBM’s with a large amount of clusters our
algorithm deviates greatly from the true size of the communities. Our solution
seems to prioritize creating large communities with many small communities,
making it a poor choice for a network with many communities of similar size.

All processing was done on a standard Google Colab notebook. Our imple-
mentation is written with speed in mind so despite modest hardware it achieves
decent speeds. Every result was run with the following parameters:

ρ : .5, We pick a simple majority for smoothing results

T0 : 5, Modularity is bounded above by 1, so we do about 5 times its possible max

r : .00003, A very small cooling rate which will give about 50000 iterations for each problem.

The cooling rate is incredibly over-conservative for the easier problems as
they converge in < 103 iterations. However, the large cooling rate is reasonable
for the large problems as improvement typically stops before 30000 iterations.
Because we do not have any convergence criteria, each trial runs for the same
number of iterations. An implementation of our solution and copy of these
results can be found here. An ideal Q is the modularity calculated if every
node was properly classified. Below is a sequence of runs with the algorithm
explaining various results:

6

https://colab.research.google.com/drive/15Xd218aFN2t1d3npVc1DMeyLCreG4O-I

Nodes Edges Runtime
(seconds)

Ideal Q Solution
Q

12 15 3.098 0.5133 0.5133

On this tiny graph used for initial testing we achieve the clustering the gives
the maximum modularity.

Nodes Edges Runtime
(seconds)

Ideal Q Solution
Q

300 427 5.545 N/A 0.3288

This randomly generated graph is meant to resemble the internet with several
large hubs that connect to smaller neighborhoods with few nodes [4]. We achieve
a community size distribution that matches this with several large communities
and many small ones.

7

Nodes Edges Runtime
(seconds)

Ideal Q Solution
Q

44 549 9.2588 0.3029 0.2717

On this example we try a simple SBM with 2 communities and little overlap. We
manage to recover the communities almost completely and get a strong estimate
of the true probability matrix, however, we still do not get a perfect recovery
for an easy example.

8

Nodes Edges Runtime
(seconds)

Ideal Q Solution
Q

97 991 10.1179 0.4293 0.3139

On a more coupled SBM with 4 communities we manage to approximately
recover the 4 communities and classify a single node that has particularly high
overlap as its own community. However the approximate communities do not
give a strong estimate of the original probability matrix.

9

Nodes Edges Runtime
(seconds)

Ideal Q Solution
Q

437 11378 24.2063 0.4720 0.2891

On a sparse SBM with only 4 communities we only detect 3 communities of
notable size. The communities are of reasonable size, but our estimate of the
probability matrix is mediocre.

10

Nodes Edges Runtime
(seconds)

Ideal Q Solution
Q

409 1855 8.2613 0.7449 0.4580

On a somewhat sparse SBM with a large amount of relatively uniform com-
munity sizes, our algorithm seems to prioritize creating large communities and
struggles to retrieve the true community size distribution. We can see by the
ideal modularity that we struggle to truly maximize modularity and remain
stuck in a local maximum.

11

Nodes Edges Runtime
(seconds)

Ideal Q Solution
Q

1421 26891 30.8627 0.7327 0.4045

(Graph not pictured due to lack of clear structure) On another sparse SBM
with a more variation in the true community size, we recover several very large
communities and few communities of the correct size. As a result our recovery
of the probability matrix falters.

12

Nodes Edges Runtime
(seconds)

Ideal Q Solution
Q

3779 1327070 662.6589 0.5124 0.2152

(Graph not pictured due to lack of clear structure) On an SBM with strong
density, we fail to get reasonably close to the number of communities or their
size. Instead we predict a relatively sparse SBM with 3 communities. Our Q is
still a respectable ≈ .21, but it is far from the ideal value of ≈ .51.

13

Nodes Edges Runtime
(seconds)

Ideal Q Solution
Q

5636 984602 505.457 0.1753 0.02407

(Graph not pictured due to lack of clear structure) After looking at a few results
we can easily produce a case our algorithm struggles on. We create an SBM
with 100 blocks ranging from size 10 to 100 nodes. Our algorithm discerns a
network with few giant communities and about 800 communities of only a single
node.

6 Conclusion

Overall we conclude our algorithm performs well on relatively small graphs with
little coupling of communities. It struggles with local maxima on larger graphs
but seems to scale well for internet-like graphs that typically contain several
large hubs and many small communities. It may have some utility for performing
many quick clustering jobs on graphs with less than 1000 nodes. We fail to
improve over leading methods for maximizing modularity such as [1] and [3] as
these implementations are just as fast and accurate. The modularity problem
was a good introduction to simulated annealing, and shows that a stronger
simulated annealing algorithm could be successful. Although our results were
not fantastic, the code is well-curated and computes modularity quickly over
many iterations.

14

References

[1] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment, 2008(10):10008, Oct 2008.

[2] Mingming Chen, Konstantin Kuzmin, and Boleslaw K. Szymanski. Com-
munity detection via maximization of modularity and its variants. IEEE
Transactions on Computational Social Systems, 1(1):46–65, Mar 2014.

[3] Roger Guimerà and Lúıs A. Nunes Amaral. Functional cartography of com-
plex metabolic networks. Nature, 433(7028):895–900, Feb 2005.

[4] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring net-
work structure, dynamics, and function using networkx. In Gaël Varoquaux,
Travis Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python
in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

[5] Todd Schneider. The traveling salesman with simulated anneal-
ing, r, and shiny, Sep 2014. https://toddwschneider.com/posts/

traveling-salesman-with-simulated-annealing-r-and-shiny/.

[6] John Walker. Simulated annealing: The travelling salesman problem, June
2018. https://www.fourmilab.ch/documents/travelling/anneal/.

[7] Wikipedia contributors. Simulated annealing wikipedia, the free encyclope-
dia, 2019. [Online; accessed 1-December-2019].

15

https://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/
https://toddwschneider.com/posts/traveling-salesman-with-simulated-annealing-r-and-shiny/
https://www.fourmilab.ch/documents/travelling/anneal/

	Introduction
	Problem Formulation
	Simulated Annealing
	Solution
	Results
	Conclusion

