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Abstract

Big Data has become a coined phrase in the industry for large sums of infor-
mation that have become available to Data Scientists. As more data becomes
available on networks (infrastructure, social networks, etc.) algorithms to an-
alyze them and draw conclusions have become in demand. This paper is a
summary of multiple aspects to analyzing relational data that is best modeled
with a graph. Each section contains a briefing of basic guidelines and consider-
ations. The paper begins by introducing the idea of a graph and the presence
of graphs in real data. The paper grows narrower in focus from abstract topics
to specific measures of a network. The final sections include a briefing on multi-
graphs which have recently jumped in demand, an introduction to the systems
one may use to process data with, and the mistakes and shortcomings to be
expected in the process.

1 Introduction

A graph G = (V, E) is a set of vertices v € V and a set of edges e € E. Pairs of
vertices can be connected by an edge e = (u,v); u,v € V. Undirected graphs
give all edges e = (u,v) a symmetric relationship without direction. Directed
graphs contain edges that start from one node and end at another node, an
asymmetric relationship. Graphs are the basis of a multitude of algorithms that
are famously used to solve problems by companies such as Google and Facebook.
For a larger introduction to graphs and theory surrounding them see [10].

Graphs have found a large presence in various communities for their ability
to process data and draw conclusions. Graphs which are mapped to some sort
of real data are called usually called networks. Network science is the study
of networks. These networks can be tangible such as a road map or subway
system or potentially more abstract describing relationships among friends on
Facebook. Barabasi, a large figure in the network science and physics commu-
nity, notes network science is celebrated for its ability to explain high levels of
complexity while maintaining broad theory for most needs [5]. Network science
is an attempt to quantify the high levels of complexity composed by the effects
of aggregated individuals in a network.



Examples of applications in the literature include modeling the interactions
of proteins [2], analyzing the World Trade Network [6], and measuring discourse
among political blogs [I] or a karate club [32]. Companies such as Google
and Facebook maintain giant networks used millions of times a day by users.
Google maintains a network where web pages are nodes and links from one
page to another are directed edges (see Section 6). Facebook naturally has
users as nodes and their friendships as links. Natural structures like the brain
can be modeled as a network. A simple fruit fly brain network contains about
40 thousands vertices [28]; a human brain could easily approach up to a billion
vertices if they were to correspond to neurons.

Consider any sort of system described above: multiple contain huge amounts
of data and interactions that occur many times in a short time frame. Individual
interactions in each system are often related e.g. a Facebook user makes a new
post and one of their friends “likes” the post. This copious amount of data has
been called Big Data by the industry. Demand for understanding networks is
not only for building theory and understanding the properties of network that
make it unique, but also creating algorithms that can scale to millions or billions
of nodes. A highly active area of research, network science has strong potential
to give a new understanding to data.

2 Data Semantics

Data points that are naturally related transform to a network for analysis.
Cities are connected by highways and the internet is a large number of devices
connected by bundles of wires. These networks have edge predicates defined
in reality. Social networks have less tangible edges: a network of twitter users
where edges point from user to user based on followers is intuitive but the
edge relationship is not easily defined. What does it mean to follow someone
on twitter? Does it mean a follower actively listens to the ideas of another
user? Does it even mean a follower reads their tweets? Certain user nodes
could be accounts that have not been accessed in several years; users may have
forgotten they followed another user and never unfollowed them. To remedy
this ambiguity an edge could occur between nodes if the corresponding user has
“liked” or “retweeted” more than 5 of another users tweets. Network data is
best taken in the context of the problem. Edges should be defined clearly and
reasonable assumptions should be made to make conclusions from a network.

Data that does not have an inherent relationship can be made into a network
if the edges are carefully defined. Consider a dataset of 500,000 Amazon prod-
ucts [22]: nodes could be individual products and edges can be drawn between
them if they have been purchased in the same order. Edges could potentially be
drawn if the products have a high overlap in their descriptions or titles. Edges
could be drawn if a particular user has left a review on both the products.
Interesting questions on this data could be:

e How can products be grouped on the home page to encourage sales?



e Which items should we advertise to users to turn the highest profit?

e What odd pairs of items in different sections (clothes, outdoor equipment,
electronics, etc.) are typically ordered together?

The definition of the edge predicate affects the network structure, the eventual
results, and how the results can be interpreted. If multiple types of relations
are present on a set of data one could consider using a multigraph (see Section
7).

Weighting is a flexible way to make networks robust. If two nodes have
multiple interactions one can give an edge a weight of some real value. Weights
play an important role in both centrality and clustering and give another tool
for solving problems.

An example of building a network for analysis from arbitrary data while
maintaining reasonable context is clique tree learning used for analyzing high
dimensional data [26]. A mutual information graph is built from categorical data
where a node equates to an attribute and the graph is completely connected.
The edges have weights corresponding to the normalized mutual information
(NMI) of the attributes. The graph is then pruned where edges corresponding
to low NMI (= 0) are removed and cliques are found in an effort to cluster the
categorical data based on high attribute dependence. Although none of the data
has a requirement to be relational, a network can be used to analyze it with
reasonable definitions for edges and nodes.

3 Networks as Matrices

Any single-layer network can be represented using an adjacency matrix. Con-
sider a network, G = (V, E),V = {1,...,n}. An adjacency matrix A has entry
A; ; = 1if and only if there is an edge from vertex ¢ to vertex j, 0 otherwise. If a
graph is undirected the matrix is symmetric. Matrices can be easily generalized
for weighted graphs with A; ; = e; ; where e; ; is the weight of the edge from
vertex ¢ to vertex j.

Adjacency matrices allow the domain of network analysis problems to extend
past combinatorics and discrete structures into the domain of matrix analysis.
Matrix analysis contains an array of tools that easily apply to network problems.
Doubly-stochastic matrices are the convex hull of permutation matrices and
are used to solve graph matching problems [2§]. A framework for estimating
matrices via the singular values has been applied to fitting stochastic block
models and graphons (see Section 4) [II]. Treating adjacency matrices and
their offshoots as linear maps is a successful technique for creating bounds on
network behaviour. As a linear map, ideas such as product spaces and norms
are well understood [21].

One of the strongest tools used is the laplacian matrix. It is defined as
L = D — A where D is a diagonal matrix of the vertex degrees and A is the
adjacency matrix. The normalized laplacian is defined similarly with L = I —
D~Y2AD~1/2. The spectrum of a laplacian matrix gives information on the



structure of a graph, including its clustering. The Courant-Fischer theorem
gives a definition for Rayleigh quotients on the laplacian, allowing for answers
to partitioning a network in reasonable fashions [12] [I§].

A particularly convincing argument for the intrinsic relationship between
networks and matrices is the association between eigenvalues of the laplacian
and the connectivity of the graph. A graph is connected if and only if the
second smallest eigenvalue of the laplacian of the graph is greater than 0 [31].
The ability to give a hard fact about a network by analyzing the spectrum will
motivate many practical algorithms on networks (see Section 5,6).

4 Random Graph Models

A random variable b ~ Bernoulli(p) follows a Bernoulli distribution with pa-
rameter p € [0,1]. Bernoulli random variables are simple: an event happens
with probability p and does not happen with probability 1 — p. Random graph
models build upon Bernoulli random variables where the event of an edge be-
tween some two nodes is a typically an independent Bernoulli random variable.

The Erdés—Rényi model is the simplest of the random graph models. The
model has two parameters: n, the number of nodes and p the probability of an
edge between any two nodes. Each edge is independent of all other edges. The
expected number of edges is p - (Z) Although simple they contain a variety of
interesting properties.

The Stochastic Block Model (SBM) can be thought of as a composition of
k interacting Erdos—Rényi models. The SBM takes a number of communities k
to model. The second parameter is a k X k symmetric matrix (for undirected
models), P where P, ; is the probability there is an edge from a vertex in com-
munity ¢ to a vertex in community j. F;; is the probability an edge occurs
between two vertices in community ¢. If P is a matrix with all equal entries
then the SBM simplifies to a single Erdés—Rényi model. Each edge in an SBM
is independent from the others. Stochastic block models are more robust than
Erdés—Rényi models and are good for modeling community structure that occur
often in social networks [17].

Generalizing further, we see an example of a latent position graph: the
random dot product graph (RDPG). The most general definition includes some
probability distribution for random unit vectors of dimension d. Each vertex
becomes associated with a vector and the probability of an edge between two
vertices is the magnitude of the dot product of their associated vectors. This
configuration allows for large generality by defining the distribution over the
vectors. The vectors can also be fixed to simplify to other models such as a
stochastic block model [4].

By fitting a network to a random graph model one can describe in simple
terms the interactions of communities in the data. As clear cut models with
backing theory random graph models have a wide range of applications from
community detection in social networks to detecting specific structures in brains
[4]. Although we've covered three models here, there are many more in the



literature such as the Barabdsi-Albert model [3], the Bianconi-Barabési model
[7], and the Watts—Strogatz model [30].

Notice all the specified models above assume all random variables are inde-
pendent and identically distributed. Assuming independence is often a require-
ment for building theory and giving bounds and guarantees for a model. In
practice this often works well but in certain contexts assuming independence
may be unreasonable. If there is an edge from node a to node b and an edge
from node b to node ¢ some contexts would imply a much higher chance for
an edge from node a to node ¢. A model which found success with the above
considerations is the mixed stochastic block model [2]. The authors found suc-
cess measuring contexts by using a offshoot of an expectation-maximization
algorithm to estimate the posterior as sampling was intractable.

5 Clustering

A cluster or community is a set of vertices that are tightly coupled by some
indicative structure. Given a network representing any sort of data, the ability
to cluster certain nodes together has many applications. By splitting a large
network into well-defined clusters the system could be understood as a much
smaller set of clusters that interact with each other.

Clustering is a useful abstraction with no hard definition. Some hard defi-
nitions include modularity, a measure of link density inside clusters compared
to between them [8]. The Louvain method is one of the first and most effective
algorithms for clustering in large networks aimed to optimize modularity [§].
As a greedy algorithm it was able to derive useful communities on graphs with
over 100 million nodes and a billion edges.

Conductance is a similar definition measuring density within communities
as compared to without. The choice between the two comes with an effort for
proving guarantees of the desired algorithm. In [§] the modularity definition
allowed for quick easy computations of change in modularity while in [T4] the
definition of conductance allowed for a framework to give guarantees on approx-
imate personalized page rank. The viability of clusterings may be compared by
conductance or modularity but as an unsupervised method there is no definitive
metric to determine if a clustering is the ground-truth.

Algorithms that have optimized the above measures give good approxima-
tions but can occasionally fall short. By computing some predetermined number
of eigenvalues and eigenvectors from some derivation of the adjacency matrix
one can cluster the graph nodes by a classic vector clustering method such as
Gaussian Mixture Models or K-Means. This is known as spectral graph clus-
tering (SGC). SGC plays upon the idea of cutting a graph into clusters or
potentially showing areas that a random walk may struggle to leave from [29].
Spectral methods are typically more expensive but can often throw away noise
in a graph for signal [12].

A good clustering can often answer questions on a network related to:

e How does community A overlap with community B?



e What’s the smallest number of communities we can group a network into
reasonably?

e [s there a non-obvious cluster in the graph of interest?

6 Centrality

Centrality is a general measure for the stature or “importance” of nodes in a
network. A high centrality implies a high “importance” as the node is considered
more central than others in the graph. Centrality is a flexible term and its
implications depend on the chosen definition.

The most basic type of centrality is degree centrality. The degree centrality of
a node is simply the degree of the node or the number of incident edges. Directed
graphs can generalize this to in-degree and out-degree. This is a relative measure
of centrality. If a node has a degree centrality of 100 this could be an anomaly if
most nodes have a degree of ~ 10 or &~ 1000 but if this is a standard degree for
the given graph it may not be an interesting measure. Degree centrality could
be normalized but this could be skewed by nodes of extreme degree. Degree
centrality can be generalized for weighted graphs where the measure is a sum of
the weights of the edges; this is a decision to be made based on the context of the
data. This simple definition has utility but it does not consider many aspects
of the structure of a graph. However, the distribution of degree centrality gives
a good overview of the overall graph structure. The degree distribution is often
used to determine if a matrix is sparse [2I] [11] giving guarantees for certain
algorithms to succeed. If a network follows a power-law degree distribution one
can derive insight to the scaling of the network or viability to be fit by a certain
model [3].

If paths, particularly optimal ones, have strong implications on a network
(typically infrastructure), betweenness centrality is valuable. The betweenness
of a node is defined as the ratio of shortest paths containing v for which v is
not a start or destination to the total number of shortest paths for which v is
not a start or destination. Nodes with a high betweenness centrality are likely
bottlenecks in a graph. Calculating betweenness is not tractable for large graphs
due to a runtime of Q(|V|?). This overview was largely derived from Brandes
[9] and his derivation for a faster algorithm to calculate betweenness on sparse
graphs.

The spectrum of the adjacency matrix can also be used to give reliable
measures of centrality. Spectral methods maintain utility via their justification
and guarantees through matrix analysis. Eigenvector centrality derives from
a simple idea: a node that is central should be connected to other central
nodes [I6]. Consider the equation: c¢(v) = %Zienemhbom(v) c(i) or ¢(v) =
%Zienemhbws(v) eiwc(i) where e;, is the weight of the edge from node ¢ to
node v. If one considers the function ¢ as a vector over the nodes the equation
can reduce to an eigenvalue problem: AZ = A¢, where A is the (weighted)
adjacency matrix and ¢ is a vector with ¢; as the centrality of node i. The



eigenvector corresponding to the largest eigenvalue is used as it is guaranteed to
have all positive entries (via Perron-Frobenius theorem) and correspond to the
best rank-1 approximation of A [I6]. As an eigenvalue problem one can use any
sort of iterative technique to produce the eigenvector for the highest eigenvalue.

A famous example of considering data context to perform analysis occurs
in the original PageRank paper [24]. PageRank is an off-shoot of eigenvector
centrality famously implemented by the founders of Google. The authors were
able to derive high quality results by considering centrality in the highly specific
context of web pages. Pages with a high PageRank are deemed important to
the web and are more likely to occur at the top of search results.

7 Multilayer Networks

Consider two networks side-by-side each modeling a different system. If these
systems were related one might want to model the networks together. This be-
comes a challenge as the edges in the two networks could have different mean-
ings. The nodes in each network may or may not correspond to an equivalent
object in the other network. Multilayer networks are an attempt to derive in-
formation from related networks. A multilayer network can generalize to any
number of networks modeled side-by-side and can even generalize to multiple
dimensions of coupled networks called aspects [19].

Graphs have the ability to model complex systems but can fall short when
modeling multiple coupled systems. A multilayer network can allow for more
reasonable analysis of systems that are deeply integrated such as those in per-
colation theory. A simple example would be a two-layer graph where one layer
models the spread of a virus and the other layer models the spread of infor-
mation about the virus [19]. Multilayer networks may also be a way to reason
about previously studied problems such as modeling a corpus with keywords
[19].

The literature surrounding multigraphs is limited, but expanding rapidly.
[19] is a survey of existing literature and an argument that multigraphs have
large potential for future application. Generalizations of the random walk,
Erdés—Rényi model, and centrality are also mentioned in [19] although much
more is to be understood about these generalizations. Multigraphs can be mod-
eled analytically with tensors. Although this representation is useful, tensors
are harder to use than matrices. As an example, computing the rank of a matrix
is simple to do efficiently, but computing the rank of a tensor is an NP-HARD
problem. [20].

Given the lack of literature and difficultly of multilayer networks a suitable
alternative may be useful. If a multilayer network can be easily mapped to a
single network with different edge colors, weights can be assigned to each edge
based on the color in the context of the problem. For example, in a social net-
work problem the edges corresponding to friends could have weight 2 and the
edges corresponding to family could have weight 10. The adjacency tensor of
a multilayer network can be unwound into a matrix called a “supra-adjacency



matrix” [I9]. This can be generalized to a “supra-laplacian” and matrix anal-
ysis can be used to analyze the multilayer network. Some groups have had
success averaging over the adjacency matrices of the layers [I2]. Success has
been found in understanding the multinetwork of international trade by analyz-
ing each layer individually and comparing to an aggregated graph [6]. Although
aggregation methods have proved useful, signal maintained in the multilayer
network is lost [19]. Careful consideration should be used when deciding to use
a multilayer network as they can potentially give important insight missed in a
typical network.

8 Computation

Although adjacency matrices allow for strong analysis of networks they are not
the most efficient way to store graphs. Adjacency matrices require O(|V|?)
space giving poor scaling for large graphs. Sparse adjacency matrices can be
stored and processed faster with existing sparse matrix technology but this can
be impractical when dealing with networks. Some networks may not warrant
use of a sparse matrix if the graph is mostly filled with various edge weights.
Sometimes when dealing with data it is possible to predict the graph structure
well [30], but often the structure of the graph is unknown until the graph is
stored on a system and analyzed. Small graphs can warrant use of an adjacency
matrix with little problem, but some systems which scale to large graphs can
handle small graphs just as well.

Large amounts of data are often stored on a distributed system as it is
not feasible to store everything on a single hard drive or SSD. A distributed
system distributes the data across multiple machines, often called a cluster.
Some database manager controls queries executed to the system which collects
results from each machine. A good partition is essential for the efficiency of
a distributed system so any underlying management can quickly find data by
exploiting locality and not look through each machine [I3]. Enormous graphs,
like enormous data, are often stored on a distributed system. The graph is
stored as a composition of a subgraph on each machine with bridges (edges)
between them. A good partition will minimize the number of bridges between
the subgraphs allowing for efficient traversals and queries on the graph. If a call
to the graph data requires traversal of a bridge additional processing needs to
be done to access the adjacent machine and consolidate the information.

Distributed systems are natural environments for parallel algorithms. Par-
allel algorithms have a focus on efficiency in both time and resources giving
rise to practically solving problems on distributed graphs. The ability to make
an algorithm parallel can make an algorithm tractable on exceptionally large
graphs (|V| > 10°) [27] or exceptionally hard problems possible on moderately
sized graphs (|V| =~ 10°) [23].

Traditional databases have been relational. Relational databases are typi-
cally tables with items as rows and attributes as columns. There are considered
relational as some columns contain id numbers that correspond to other data



items, potentially in another table. This design paradigm often lacks compati-
bility with graphs:

e Graphs and their algorithms typically require flexible data. It is not un-
common to have a network where there are several types (colors) of nodes
each with different attribute sets and several types (colors) of edges also
with different attribute sets. A relational database requires careful plan-
ning beforehand but graphs may be too complicated to spend the time
mapping out an entire database.

e Relational databases are effective in many applications but typically re-
sults are returned after a single query. Graphs often require multiple
queries to do basic algorithms such as path finding or counting the de-
grees of all neighbors. A relational database would require a number of
queries proportional to the size of a path or neighbor set while a graph
database can likely give these results in one optimized query.

Recently there have been developments to produce databases based on graphs
that follow the NoSQL paradigm. NoSQL databases are not relational nor or-
ganized in tables. NoSQL databases are typically flexible to data writes and
are more adept to distribution. By using a NoSQL database based on a graph,
one can easily use a system that is adapted to graph structures for their graph
algorithms. Some popular graph databases include: Neo4;j E|, Blazegraph EL and
HBase [l

In an effort to consolidate the various graph databases the Apache Software
Foundation developed Gremlin El Gremlin is an implementation independent
traversal language for graphs. Although a steep learning curve is present, Grem-
lin has the potential to be an efficient solution to network analytics. Any graph
database can be supported in Gremlin if a proper interface between the two are
built. This allows an analyst to use a system that is suited towards their needs.
Some specific justifications include:

e Neodj: A fast backend for large graphs with support for various useful
graphical user interfaces.

e Blazegraph: A backend based on the GPU potentially giving huge speedups,
particularly for parallel algorithms.

e HBase: A backend with strong support for distributed data of enormous
proportions.

9 Pitfalls of Network Science

Although network analysis can derive helpful conclusions, some mistakes can
cause false conclusions to be drawn.

Thttps://neo4j.com/
%https://www.blazegraph.com/
Shttps://hbase.apache.org/
Ihttps://tinkerpop.apache.org/gremlin.html
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The definition of sparsity varies throughout the literature: sometimes it is
defined as a bounded expected degree [21] and other times as an expected degree
that grows logarithmically with the number of vertices [I5]. It’s somewhat
disingenuous to make a choice of algorithm for analysis based on definitions of
sparsity with grey areas. Analyzing the degree distribution is useful to give an
idea of density, but it is ambiguous to claim any graph is sparse as the behaviour
of the expected degree could potentially fall on either side of sparse or dense.
The expected degree of a network asymptotically can only be estimated and
could easily be close enough to the bound that it is hard to say which side it
falls on. This does not bring confidence in conclusions drawn from algorithms
that have a sparsity vs. dense requirement if a network is ambiguously dense.

Clustering is not a definitive term and although measures such as conduc-
tance and modularity can be used to compare them, a low measure does not
indicate a bad clustering. Many network clustering papers have used datasets
such as political blogs [I] with a given truth and claim a method is not viable
if the clusters do not match the truth very well. Recently a paper has shown a
comparison of two closely related clustering algorithms giving two different, but
correct clusterings [25]. Existing clustering algorithm papers typically do not
explain the structure of clusters extracted making it unclear which algorithm to
use to extract a certain feature of a network.

Occasionally algorithms run on networks will yield good results but have very
little backing theory to them which can be used to give guarantees on runtimes
or accuracy [8] [14] [24]. Without rigorous theory behind the algorithm, results
achieved could be wrong as certain criteria for convergence or precision were
not met. Generally if an algorithm has been applied many times over with
success it should be reasonable to use for analysis; however, recent algorithm
developments without a convincing argument for correctness should be open to
question.

Network analysis has yielded great results, but it is not an end-all be-all
technique. It is perfectly reasonable to have data which has no place being
put in a network (although a probabilistic graph model may be useful). If data
points have no relationship between each other and no sensible edge relation can
be derived, a network will yield no additional information and is likely drawn by
some arbitrary unimportant metric. Graphs are definitely an exciting research
areaﬂbut there will always be utility for other advanced methods for clustering,
anomaly detection, and regression.

To avoid creating arbitrarily drawn networks it may be useful to consider
what the following typical network structures imply about the data:

e Path: If a network has a path from a node s to another node t, what can
be said about the relationship between the two entities corresponding to
the nodes? How does this relationship get stronger or weaker as the path
length increases?

e Clique: If some number of nodes are (almost) completely connected, what

Shttps://www.wired.com/insights/2014/03/graph-theory-key-understanding-big-data/
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does this tight cluster imply about each of the nodes?

e Connected Component: If a graph is disconnected where some set of nodes
have no path to another set of nodes, what is the distinction between the
sets of nodes?

e Bottleneck: If two communities are present in a graph but have little inter-
community edges, can something be said about the communities or the
edges and nodes on the bottleneck?

10 Conclusion

Network analysis has become a highly cross-discipline area taking ideas from
computer science, applied math, and statistics. Approaching problems that
could draw meaningful conclusion through network analysis is difficult since
the complexity of the model becomes difficult to navigate. Understanding the
construction of the network allows a user to form questions that have useful
answers. The various tools for understanding networks can be summarized as
questions:

e Random graph models: How can my network be modeled accurately by a
well-understood distribution?

e Centrality: Which nodes are particularly more important than others?
e Clustering: What and where are the communities in my graph?

The context of a problem may warrant a multilayer network due to the poten-
tial to carry more information. Lastly, to feasibly consider running algorithms
on large networks, a system for computation needs to be prepared.

Although this guide was meant to give a strong introduction to network
analysis the literature is vast. Some topics not covered in this write-up that
hold large utility in network models are path-finding algorithms, combinatorial
methods, and random walks. Some essential parts of an analytic pipeline that
were not covered include integrating an additional data set with a network
and using existing machine learning methods together with a network to draw
conclusions.
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